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Abstract. This work reports the first occurrence of siliceous microfossils in the Angastaco Formation (upper Oligocene—Upper Miocene) in the
Salta Province, Argentina. Two samples were collected from the Quebrada Escalera section to conduct a prospective analysis for phytoliths in
paleosols, aiming to infer paleovegetation and paleoenvironmental conditions. The sedimentary succession comprises ephemeral sheet-like
fluvial deposits and fluvial-eolian interaction deposits with calcareous paleosol development on eolian dunes. The microfossil analysis revealed
multicellular and unicellular phytoliths, diatom frustules, chrysostomataceae stomatocysts, cutinous epidermal fragments, carbonised
microremains, and sponge spicules. The samples showed varied abundances of autochthonous microremains suggesting different hydrological
conditions. Sample 2550, with abundant diatoms and stomatocysts, indicates a lentic water environment while sample 2551, rich in sponge
spicules, suggests higher energy conditions. The phytolith assemblage, including Poaceae, Cyperaceae, and Arecaceae indicates wet interdune
and/or extradune areas.

Key words. Phytoliths. Andean foreland basin. Fluvial-eoclian deposits. Micromorphology.

Resumen. MICROFOSILES SILICEOS EN PALEOSUELOS CALCAREQS DE DEPQSITOS FLUVIO-EQLICOS DE LA FORMACION ANGASTACO
(OLIGOCENO-MIOCENO), PROVINCIA DE SALTA, ARGENTINA. Este trabajo reporta la primera ocurrencia de microfésiles siliceos en la Formacion
Angastaco (Oligoceno superior—Mioceno Superior) en la provincia de Salta, Argentina. Se recolectaron dos muestras de la seccion Quebrada
Escalera para realizar un analisis prospectivo de fitolitos en paleosuelos, con el objetivo de inferir la paleovegetacion y las condiciones
paleoambientales. La sucesion sedimentaria comprende depdsitos fluviales efimeros mantiformes y depésitos de interaccion fluvio-edlica con
desarrollo de paleosuelos calcareos sobre dunas edlicas. El analisis de microfésiles revel6 fitolitos multicelulares y unicelulares, fristulos de
diatomeas, estomatocistes de chrysostomataceas, fragmentos de tejido epidérmico cutinoso, microfésiles carbonosos vy espiculas de
espongiarios. Las muestras mostraron abundancias variadas de microfésiles autoctonos, lo que sugiere diferentes condiciones hidrologicas. La
muestra 2550, con abundantes diatomeas y estomatocistes, indica un ambiente acuatico Iéntico mientras que la muestra 2551, con abundantes
espiculas de espongiarios, sugiere condiciones de mayor energia. La asociacion de fitolitos, que incluye Poaceae, Cyperaceae y Arecaceae indica
zonas de interduna y/o extraduna himedas.

Palabras clave. Fitolitos. Cuenca de Antepais Andina. Depésitos fluvio-edlicos. Micromorfologia.

THe oBJECTIVE of this work is to report the first occurrence of  (Dormaar & Lutwick, 1969; Kelly et al, 1998; Raigemborn et
siliceous microfossils from the Angastaco Formation (upper  al, 2018; Bellosi et al, 2021). Phytoliths have proven to be
Oligocene-Upper Miocene), Salta Province, Argentina. The  reliable indicators of the proportion of grasses versus trees
study of phytoliths in paleosols allows for the determination  in many ecosystems, as they can be preserved in well-
of paleovegetation and, in turn, the establishment of oxidized sediments that often lack pollen and macrofossils

vegetation patterns according to the paleoenvironment  (Stromberg, 2011). In eolian landscapes, periods of soil
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formation are often brief, and burial by clastic deposits
occurs rapidly. As a result, the “inheritance” of phytoliths in
these environments may be less representative of the main
environmental conditions, as the stratigraphic significance
of phytoliths depends on the duration of soil development
prior to burial (Boyd, 2005). However, phytoliths represent
valuable indicators that must be contrasted with
physical/chemical sedimentary features.

Phytolith studies in the Paleogene—Neogene of
Argentina have mostly focused on the Patagonia region (e.g,
Raigemborn et al, 2018; Bellosi et al, 2021). The record of
phytoliths during the Oligocene—Miocene in northwestern
Argentina is very scarce. Cotton et al. (2014) conducted
phytolith studies in the Andalhuala Formation (Upper
Miocene—Pliocene), Catamarca Province. The objective of
the mentioned study was to determine the origin of the
expansion of C4 grasslands. Similarly, Ghosh et al. (2020)
conducted phytolith studies, in the Jesis Maria, Guanaco
and Piquete formations (Middle Miocene—Lower Pliocene)
and Palo Pintado Formation (Upper Miocene-Lower

Pliocene) in the Salta Province, with the same purpose.

GEOLOGICAL SETTING

The study area is located within the Eastern Cordillera
geologic province (Turner & Mon, 1979) in the Tonco Valley
(Fig. 1.1, 2). This valley consists of north-south depressions
separated by mountain ranges with a basement core,
bordered by reverse faults that predominantly verge to the
west (Hongn & Seggiaro, 2001; Carrera & Muhoz, 2008).
The basement of the area is composed by the Puncoviscana
Formation, characterized by Precambrian-Cambrian low-
grade metamorphic rocks, overlain by Mesozoic to Cenozoic,
mostly non-marine clastic successions (Hongn & Seggiaro,
2001). Lower Cretaceous to middle Eocene rocks are
included in the Salta Group (Fig. 1.2) that represents the
filling of an intra-continental rift basin (Salfity & Marquillas,
1994; del Papa, 1999, 2006; Sabino, 2004; Hongn et al,
2011). The middle Eocene to Pleistocene sedimentary
succession corresponding to the Payogastilla Group
(Diaz & Malizzia, 1983) represents the Andean foreland
sedimentation (Starck & Vergani, 1996). The Payogastilla
Group is more than 6,000 m thick and consists of coarsening

upward alluvial sedimentary succession that includes four
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lithostratigraphic units (Diaz & Malizzia, 1983). From the
base to top these units are: Quebrada de los Colorados
(middle Eocene—upper Oligocene), Angastaco (upper
Oligocene—Upper Miocene), Palo Pintado (Upper Miocene—
Lower Pliocene) and San Felipe (Lower Pliocene—Lower
Pleistocene) (Fig. 1.2).

The Angastaco Formation (del Papa et al, 2013a) is
approximately 3,500 m thick and is composed of two
members. The lower Tin Tin Member is ~450-600 m
thick and is composed of gravelly and sandy ephemeral
unconfined fluvial channel deposits, gravelly fluvial channels
deposits with perennial flow, fluvial-eolian interaction
deposits, and eolian deposits composed of eolian dunes and
dry and wet interdunes. The upper Las Flechas Member is
composed of ~3,780 m of fluvial and alluvial conglomerate
and sandstone. The age of the Angastaco Formation spans
from the late Oligocene ~28 Ma (based on stratigraphic
correlation according to Aramayo et al, 2017) to the
Late Miocene (based on two volcanic tuffs dated at 8.8
+ 0.5 Ma U/Pb in zircon and 8.13 + 0.05 Ma U/Pb in zircon;
after Carrapa et al, 2012; Payrola et al, 2020). The three
radiometric ages available for the lower aeolian Tin Tin
Member are Early Miocene (Aquitanian-Burdigalian): 21.4
+ 0.7 Ma (U/Pb, detrital zircons, Carrapa et al, 2012), 21.0
+ 0.8 Ma (U/Pb, zircons in a tuff, del Papa et al, 2013b), and
17.46 = 0.08 Ma (U/Pb, zircons in a tuff, Payrola et al, 2020).
These ages could potentially correlate with the Oligocene—
Miocene Eolian Belt (OMEB) identified in western and

northwestern Argentina (Ciccioli et al, 2023).

MATERIAL AND METHODS

This is a preliminary study of two paleosol samples.
Siliceous microfossils samples were collected from the
lower part of the Tin Tin Member exposed in the Quebrada
Escalera section (Fig. 1.3), which was measured using
standard sedimentological techniques, a Garmin eTrex® 10
GPS device, and a Brunton Geo 5010 compass. Lithofacies
were defined based on lithology, grain size, color (GSA
rock Color Chart), sorting, and sedimentary structures. Two
samples, each weighing approximately 150 g, were taken
for siliceous microfossils study at 55 m and 65 m of the
section (Fig. 1.3). These samples were incorporated into the

sedimentary collection of the Paleobotany Laboratory at
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CICYTTP-Diamante, with the following identification
numbers: ID 5237 (microscope preparation 2550) and ID
5238 (microscope preparation 2551). In the laboratory,
the samples were prepared following the methodology
proposed by Zucol et al. (2010a).

The methodology for concentrating microremains
followed conventional guidelines for biomineral concen-
tration in clastic materials, with particular caution to
preserve and concentrate elements formed by resistant
organic matter, such as cutin and sporopollenin. The
process involved several chemical treatments: soluble
salts were removed by repeated washing with distilled
water; carbonates were eliminated by treating the samples
with 10% diluted hydrochloric acid; disaggregation was
achieved using sodium hexametaphosphate; organic
matter was removed using hydrogen peroxide; and finally,
the pH of the remaining material was neutralized to
obtain a “clean sample”. These steps were designed to
eliminate compounds that could cause agglomeration of
micropaleontological elements. Grain size separation was
performed on two fractions: a fine fraction (less than 5 pm)
by siphoning, and a coarse fraction (greater than 250 pm)
by sieving. The fraction between 5 and 250 pm, ranging
from fine silt to fine sand, was further used for densi-
tometry separation into two grain size fractions: 5-53 pm
and 53-250 pm. Densitometry separation was carried
out using an aqueous solution of sodium polytungstate
at 2.3 g/cm3. The concentrates were mounted on a cover

slide and affixed with Canada Balsam for fixed microscope

.
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preparations and with Cedarwood Oil for liquid microscope
preparations. Microscopic observations were conducted
using a Nikon E200 petrographic microscope at the
Paleobotany Laboratory (CICYTTP-Diamante). Photographs
were taken using a Nikon Coolpix 990 digital camera.

The description of phytoliths was based on a phytolith
morphotype classification, with names and acronyms
detailed in Neumann et al. (2019). The classification draws
on previous morphological descriptors follows Madella
et al. (2005) and the guidelines proposed by Twiss et al.
(1969), Bertoldi de Pomar (1971), Twiss (1992), Kondo et al.
(1994), and Zucol (1996). These sources were also used
to determine the botanical affinities of diagnostic mor-
photypes. The acronyms used align with the morphotype
definitions provided by Zucol et al. (2010b) and their group
names according to Raigemborn et al. (2018).

RESULTS AND DISCUSSION
Depositional environment
The Tin Tin Member features a lower ephemeral
sheet-like fluvial deposits, middle fluvial-eolian interaction
deposits, and, in the upper part of the section, eolian
deposits comparable to an erg composed of eolian dunes
and dry and wet interdunes (Fig. 1.3) (see Espinoza, 2024).
Four facies and two facies associations were observed
in the lower section of the Tin Tin Member (Table 1). The
latter included ephemeral sheet-like fluvial deposits (FA1)
and fluvial-eolian interaction deposits (FA2), which are

analyzed below.

TABLE 1 - Summary of the sedimentary facies in the lower section of the Tin Tin Member with their description and interpretation.

Facies Description Interpretation
S Well-sorted sandstone with large-scale planar Subaerial migration of dunes with
P cross-stratification straight to low-sinuosity crests
Sm Massive sandstone Possible hyperconcentrated flow events
St Sandstone with trough cross-stratification Subaqueous mlglratlor} C VNS A
and linguoid dunes
Sn Sandstone with carbonate nodules Soil development with carbonate precipitation
Fh Mudstone with horizontal lamination Subaqueous setting of mud
Tm Massive tuff Volcanic ash fall
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Ephemeral sheet-like fluvial deposits (FA1): This facies
association was observed in the lower part of the section,
with a thickness of 20 m, composed of St, Sm and Sn
facies (Fig. 1.3). The St facies is stacked in a package of
approximately 10 m thick, consisting of tabular sand bodies
composed of coarse-grained sandstone with a greyish
orange color (10YR 7/4) and trough cross-stratification.
The sets exhibit a fining-upward tendency, starting with a
level of fine-grained gravel and ending with coarse-
grained sandstone. The Sm facies consists of poorly-sorted,
medium- to coarse-grained sandstone, a greyish orange
color (10YR 7/4) and massive appearance. The Sn facies
consists of coarse-grained sandstone with silt-clay matrix
and colors ranging from moderate orange-pink (10R 7/4) to
moderate reddish orange (10R 6/6) and contains carbonate
nodules. The nodules are non-coalescent, averaging 0.96
cm in size (range= 0.42-2.58 cm; n= 27) and show vertical
size gradation, with the largest ones located at the top of
the beds. The parent material of the Sn facies is massive
or trough cross-stratified sandstone facies similar to
underlying beds. It also presents trace fossils including root
casts, rhizocretions, Skolithos linearis, Taenidium barretti, and
Palaeophycus tubularis.

This facies association is interpreted as ephemeral
sheet-like fluvial deposits with high-sinuosity and linguoid
dunes based on poor sorting of sandstones, tabular geo-
metry of the sand bodies, cross-stratification and fining-
upward tendency (Bridge, 1993; Miall, 1996; Billi, 2007).
The association of carbonate nodules with root casts, and
rhizocretions indicate development of calcareous soils.
The paleosols document either the ephemeral nature of the
fluvial deposits or/and their development in interfluvial
areas (Deluca & Eriksson, 1989).

Fluvial-eolian interaction deposits (FA2): This facies
association was observed between 20 m and 71 m of the
logged section, and it is composed of the Sp, Sm and Sn
facies (Fig. 1.3). The Sp facies consists of well-sorted,
medium-grained sandstone with a light brown color (5YR
6/4) and rounded grains. It features large-scale planar
cross-stratification, with foreset slope ranging from 17° to
40°. The Sm facies consists of poorly-sorted, medium- to
coarse-grained sandstone with silt-clay matrix, a greyish

orange color (10YR 7/4) and massive appearance. The Sn

facies is characterized by medium-grained sandstone with
colors ranging from moderate orange-pink (10R 7/4) to
moderate reddish orange (10R 6/6) and contains carbonate
nodules. The parent material of the Sn facies is massive
or planar cross-stratified sandstone facies. The carbonate
nodules are non-coalescent, averaging 4.2 cm in size
(range= 1-9.8 cm; n= 17) and show vertical size gradation,
with the largest nodules at the top of the layers. Thin
sections reveal micrite (16.2% by volume) and patches
of sparite (15.2% by volume). These levels also contain
abundant root casts, rhizocretions, and Skolithos linearis.
Two samples were collected from this facies (Fig. 1.3) for a
preliminary analysis of siliceous microremains.

This facies association is interpreted as fluvial-eolian
interaction deposits developed in low relief areas, where
fluvial and eolian processes inter-fingered. The precipitation
of carbonate nodules is attributed to pedogenic processes,
based on their association with rhizoliths (Klappa, 1978,
1980). Paleosols development is compatible with an
incipient stage of calcic soils (stage Il to Il of Machette,
1985) due to the development of sparse carbonate nodu-
les and carbonate content. The Sp facies corresponds to
subaerial migration of dunes with straight to low-sinuosity
crests. The massive sandstones (Sm facies) suggest hyper-
concentrated flows (Scherer & Lavina, 2005) from sporadic
flooding after high-intensity rainfall (Mountney & Jagger,
2004). The Sn facies is the result of soil-forming processes
on a parent material composed of sandstones of eolian (Sp
facies) and fluvial origin (Sm facies). In both cases, indicate

low rate of deposition and the stabilization of the surface.

Microfossils

The analysed samples (2550 and 2551) were taken from
the Sn facies with an eolian parent material (Sp facies). Both
samples contain microremains including small cutinous
epidermal tissue fragments (Fig. 2.1), diatom frustules
(Fig. 2.2), carbonised microremains (Fig. 2.3), sponge
spicules (Fig. 2.4), chrysostomataceae stomatocysts (Fig.
3.1), multicellular (Fig. 2.1) and unicellular phytoliths (Fig.
3.2-9).

Most of the phytoliths are unicellular, with a notable
presence of bulliform elements, exhibiting polyhedral

and fan-shaped forms (Fig. 3.7-8). Among the macro-

43



8
APA ‘ Publicacion Electronica - 2025 - Volumen 25(2): 39-48

Figure 2. Multicellular phytoliths and non-phytolith microremains of the analyzed samples. 1, Graminoid and dicot epidermal fragment and arecoid vascular conduction
elements. 2, Diatoms. 3, Microcharcoal particles. 4, Fragmented and complete spicules of siliceous sponges. Scale bar in 4= 20 pm is valid for all the panels.
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phytoliths, elongated elements with various contours
(smooth, spiny and wavy) and shapes (prismatic to irregular)

were observed. Worn and/or fragmented phytoliths were

rare, typically showing superficial wear. For grass silica
short cell phytoliths (GSSCP) bilobate, truncated cones,

oblongs, boat-shaped, and small prismatic elements with
smooth or wavy contours were found (Fig. 3.2).

Sample 2550 was characterized by a high abundance of
well-preserved diatoms to a lesser extent, broken frustules.
Chrysostomataceae stomatocysts were also common and

Figure 3. Different phytolith and stomatocysts observed in the Tin Tin Member of the Angastaco Formation. 1, Chrysostomataceae stomatocyts. 2, Grass silica short
cell phytoliths (GSSCP). 3, Point-shaped phytoliths. 4, Tracheary annulate phytolith. 5, Short prismatic phytoliths. 6, Different graminoid and cyperoid types of elongated
phytoliths. 7, Cuneiform Bulliform phytoliths. 8, Fan-shaped elements. 9, Epidermal elongate graminoids phytoliths. Scale bar in 5= 20 pm is valid for all the panels.
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exhibited both smooth and spiny surfaces (Fig. 3.1). These
microfossils suggest a lentic water environment with
periods of water stress, which is not recorded in the
measured section.

In contrast, sample 2551 contained abundant sponge
spicules, mostly fragmented smooth macroscleras,
although some complete elements were also observed.
The high abundance and size of these sponge remains
indicate transport processes under higher-energy water
conditions. Additionally, cutinous tissue fragments were
found exclusively in this sample.

Despite these differences, both samples shared several
micropaleontological features. Microcharcoals, generally
mimicking cellular forms, were present in both samples
(Fig. 2.3), and each contained a substantial amount of
microremains, mostly autochthonous and exhibiting
minimal wear. The phytolith content appeared similar in

both abundance and diversity across the two samples.

CONCLUDING REMARKS

From the facies analysis it can be interpreted that the
lower portion of the section is composed of sheet-like
deposits from ephemeral streams with development of
calcisols. The fluvial deposits corresponding to mid-distal
positions of alluvial fans (distal ‘braided’ sheetflood)
(Miall, 1996), based on correlations with other sections in
the Cerro Tin Tin area (see Espinoza, 2024). The middle and
upper portions of the studied section consist of eolian
dunes and ephemeral fluvial deposits, both exhibiting the
development of calcisols. The sampled calcisols developed
on eolian dunes contain phytoliths. The low percentage
of small phytoliths and the lack of a detailed count prevent
a precise estimation of the climatic and moisture condi-
tions for the grasses. However, the presence of Poaceae,
Cyperaceae and Arecaceae suggests that the microremains
originated from humid interdune or extradune areas, which
were reworked and deposited in eolian dunes (Sp facies).
Humid interdune or extradune facies associated with
lentic water environment and periods of water stress were
not recorded in the measured section. Thus, information
provided by phytoliths, diatoms and sponge spicules,

support the interaction of eolian and fluvial processes and

46

.
APA ‘ Publicacion Electronica - 2025 - Volumen 25(2): 39-48

give additional information to that offered by the facies
analysis. A detailed and systematic study of phytoliths can
offer insights into the paleobotanical and paleoclimatic

conditions of this sedimentary succession.
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