METHODOLOGY AND ANALYSIS IN THE DIGITIZATION OF MICROSCOPIC BODIES: APPLICATION TO PHYTOLITHIC STUDIES

Authors

DOI:

https://doi.org/10.5710/PEAPA.25.08.2023.475

Keywords:

Phytolith 3D, Modelling, Sculpting, Dust3D, Blender

Abstract

The continuous evolution of tools applied in 3D digitization and modelling in recent times has allowed their utility in different scientific fields, one of them being paleontology, providing benefits for the study and exposure of fossil materials. In this paper, we present two methodologies for digitizing phytolith morphotypes as three-dimensional models from two-dimensional images using freely available software called bubble model and sculpting mode. Both methodologies are considered complementary when generating a three-dimensional phytolith model. This approach is effective in achieving 3D modelling, generating not only a user-friendly way to visualize such morphotypes but also an effective way to the knowledge and understanding of the variety of morphologies that characterize silicophytoliths.

References

Alexandre, A., Basile-Doelsch, I., Delhaye, T., Borshneck, D. y Mazur, J. C., Reyerson, P. (2015). New Highlights of Phytolith Structure and Occluded Carbon Location: 3-D X-Ray Microscopy and NanoSIMS Results. Biogeosciences, 12, 863–873.

Autodesk, INC. (2019). Maya. Available from https:/ autodesk.com/maya.

Babot, M. P., Musaubach, M. G. y Gonzalez, J. A. (2016). Continuo morfológico y fitolitos 3D. Aportes desde una perspectiva arqueobotánica para definir conjuntos fitolíticos. En Zucol, A. F., Patterer, N.I., Colobig, M.M. y E. Moya (eds.). Taller de Micropaleoetnobotánica. Relevancia de una Red Interdisciplinaria de Investigaciones en Fitolitos y Almidones, Libro de Resúmenes, 79.

Bernardini, F. y Rushmeier, H. (2002). The 3D Model Acquisition Pipeline, 21, 149–172.

Blackman, E. (1971). Opaline silica in the range grasses of southern Alberta. Canadian Journal of Botany, 49, 769–781.

Boyde, A. (2004). Improved depth of field in the scanning electron microscope derived from through-focus image stacks. Scanning, 26, 265–269.

Brecko, J., Mathys, A., Dekoninck, W., Leponce, M., VandenSpiegel, D., Semal, P. (2014). Focus stacking: Comparing commercial top-end set-ups with a semi-automatic low budget approach. A possible solution for mass digitization of type specimens. ZooKeys, 464, 1–23.

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. y Ranzuglia, G. (2008). meshlab: an open-source mesh processing tool. 6th Eurographics Italian chapter conference, 129-136.

Davies, A. (2010). Close-up and macro photography (pp. 172). Focal Press, Elsevier, Oxford.

Domínguez-Quintana L., Rodríguez-Florido M. A., Ruiz-Alzola J. y Sosa D. (2004). Modelado 3D de Escenarios Virtuales Realistas para Simuladores Quirúrgicos Aplicados a la Funduplicatura de Nissen. Revista Informática y Salud, 1579–8070.

Ellis, R.P. (1979). A procedure for standardizing comparative leaf anatomy in the Poaceae. The leaf-blade as viewed in transverse section. Bothalia, 12, 65–109.

Erdtman, G. (1969). “Handbook of Palynology. An introduction to the study of pollen grains and spores”. Munksgaard (pp. 486). Copenhagen.

Gallaher, J. T., Akbar, S. Z., Klahs, P. C., Marvet, C. R., Senske, A. M., Clark, L. G. y Strömberg, C. A. E. (2020). 3D shape analysis of grass silica short cell phytoliths: a new method for fossil classification and analysis of shape evolution. New Phytologist, 228, 376–392.

Gallo, A., Muzzupappa, M. y Bruno, F. (2014). 3D reconstruction of small sized objects from a sequence of multi-focused images. Journal of Cultural Heritage, 15(2), 173–182.

Goldsmith, N. T. (2000). Deep focus; a digital image processing technique to produce improved focal depth in light microscopy. Image Analysis & Stereology, 19, 163–167.

Hess, R. (2010). Blender Foundations: The Essential Guide to Learning Blender 2.6. Focal Press.

Lanza, D. (2015). El uso de software libre en la teoría y práctica artística. Blender como plataforma digital para la creación escultórica. PIMCD Nro. 155. Universidad Complutense. Madrid.

McNeel, R y asociados. (2010). Rhinoceros 3D, Version 6.0. Robert McNeel & Associates, Seattle, WA.

Metcalfe, C. (1960). Anatomy of the Monocotyledons. 1. Gramineae. Clarendon Press. (pp. 731). Oxford.

Neumann, K., Strömberg, C. A. E., Ball, T., Albert, R. M., Vrydagh, L. y Scott Cumming, L. (2019). International code for phytolith nomenclature (ICPN) 2.0. Annals of Botany. Oxford, 20, 1–11.

Payne, A. (2011). Rapidform XOR3 Interface Basics. CAST Technical Publications Series. Number 5963.

Photomodeler Pro. (1997). User Manual. Eos Systems. Vancouver, Canada.

Piperno, D. R. (1988). Phytolith analysis: an archaeological and geological perspective, San Diego. pp. 280. Academic Press.

Piperno, D. R. (2006). Phytolith. A comprehensive guide for archaeologist and paleoecologist. 238 pp. Altamira Press

Radu, R. B y Cousins, S. (2011). "3D is here: Point Cloud Library (PCL)". IEEE International Conference on Robotics and Automation, 1–4.

Rovner, I. (1971). "Potential of Opal Phytoliths for use in Paleoecological Reconstruction", Quaternary Research, 9(3), 343–359.

Ruiz Torres, D. (2017). El uso de tecnologías digitales en la conservación, análisis y difusión del patrimonio cultural. En: Acción Cultural Española (AC/E). Anuario AC/E de Cultura Digital. 1ed.Madrid: Acción Cultural Española (AC/E), 1, 129–227.

Sederberg, T. W., Zheng, J., Bakenov, A., Nasri, A. (2003). T-splines and T-NURCCSs, ACM Trans. Graph, 22(3), 477–484.

Tindall, A. y Kalms, B. (2012). Guidance: Photographing specimens in natural history collections. Atlas of Living. Australia.

Tomlinson, P. B. (1961). Anatomy of the Monocotyledons. 2. Palmae. Oxford University Press. (pp. 453).

Published

2023-09-13

Issue

Section

Articles