##plugins.themes.bootstrap3.article.main##

María V. Mancini Florencia P. Bamonte ; María A. Marcos ; Gonzalo D. Sottile ; Marcos E. Echeverría

Resumen

Resumen. En este trabajo se discuten los diferentes aspectos metodológicos a tener en cuenta en los estudios paleoecológicos. Las consideraciones teóricas y metodológicas discutidas incluyen los siguientes aspectos: tipos de depósitos, procesos tafonómicos, representación polínica actual a partir de muestras de sedimento y registro de la vegetación, suma polínica representativa de la composición de la comunidad vegetal, productividad polínica diferencial y dispersión de taxones y su representación espacial, precisión taxonómica y la comparación con la vegetación en cada área, y análisis de múltiples indicadores. Las investigaciones realizadas por los autores en distintas áreas y depósitos de Patagonia, basadas principalmente en el análisis polínico, se utilizaron para ejemplificar y sintetizar estos diferentes aspectos y su importancia en la reconstrucción de ambientes del pasado. La integración de datos provenientes de múltiples sitios permitió reducir las limitaciones impuestas por las incertidumbres contenidas en el conjunto de datos de un único sitio, por ejemplo, discontinuidades, sesgos, sobre o subrepresentaciones de taxones. Esta integración también permitió poner a prueba hipótesis sobre cambios en el clima a escala regional a partir de los cambios en la vegetación. Palabras clave. Análisis polínico. Aspectos metodológicos. Tipos de depósitos. Tafonomía. Relación polen-vegetación. Múltiples indicadores.Abstract. PALEOECOLOGICAL ANALYSES AND METHODS FOR FOREST AND STEPPE COMMUNITIES RECONSTRUCTION IN PATAGONIA, ARGENTINA. In this paper we discuss the different methodological aspects to be taken into account in paleoecological studies. The theoretical-methodological considerations discussed include the following aspects: deposit types, taphonomic processes, pollen representation from modern sediment samples and vegetation records,  pollen sum representative of the plant community composition, differential productivity and dispersion of taxa and their spatial representation, taxonomic precision and comparison with vegetation in each area, and multiproxy analysis. The investigations carried out by the authors in different areas and deposits of Patagonia, based mainly on palynological analysis, were applied to exemplify and synthesize these different aspects and their importance in the environmental reconstruction of the past. The data set integration from multi-site allowed us to overcome limitations contained in a single site data set, such as discontinuities, biases, or taxa overrepresentations. This integration also allowed us to test climate change hypotheses at a regional scale based on vegetation changes. Key words. Pollen analysis. Methodology. Deposit types. Taphonomy. Pollen- vegetation relationship. Multiproxies.

##plugins.themes.bootstrap3.article.details##

Referencias
Adam, D.P. y Merhinger, P.J. 1975. Modern pollen surface sample: analysis of subsamples. Journal of the Research of the US Geological Survey 3: 733–736.

Andersen, S. 1970. The relative pollen productivity and pollen representation of North European trees, and correction factors for tree pollen spectra. Geological Survey of Denmark II 96: 1–99.

Ariztegui, D., Anselmetti, F.S., Gilli, A. y Waldmann, N. 2008. Late Pleistocene environmental change in eastern Patagonia and Tierra del Fuego - A limnogeological approach. En: J. Rabassa (Ed.), The Late Cenozoic of Patagonia and Tierra del Fuego. Developments in Quaternary Science. Elsevier, Amsterdam, p. 241–253.

Auer, V. 1949. Las capas volcánicas como base de la cronología postglacial en Fuego Patagonia. Revista de Investigaciones Agrícolas 3: 49–208.

Auer, V. y Cappannini, D. 1957. La erosión en la región de los lagos San Martín y Tar. IDIA, p. 7–27.

Bamonte, F.P. y Mancini, M.V. 2009. Características ambientales del ecotono bosque-estepa durante el Holoceno medio (Santa Cruz, Argentina). En: M. Salemme, F. Santiago, M. Álvarez, E. Piana, M. Vázquez, y M.E. Mansur (Eds.), Arqueología de Patagonia: una mirada desde el último confín. Editorial Utopías, Ushuaia, p. 881–892.

Bamonte, F.P. y Mancini, M.V. 2011. Palaeoenvironmental changes in the forest-steppe ecotone since the Pleistocene–Holocene transition: pollen analysis from a wetland in Southwest of Patagonia (Argentina). Review of Palaeobotany and Palynology 165: 103–110.

Bamonte, F.P., Mancini, M.V., Belardi, J.B. y Espinosa, S. 2013. Inferencias paleoambientales a partir del análisis polínico de sitios arqueológicos del Área del Lago San Martín (Santa Cruz, Argentina). Magallania 41: 155–169.

Bamonte, F.P., Mancini, M.V., Sottile, G.D., Marcos, M.A. y Gogorza, C. 2015. Vegetation dynamics from Lago San Martín area (Southwest Patagonia, Argentina) during the last 6500 cal B.P. Vegetation History and Archaeobotany 24: 267–277.

Batista, W.B, Taboada, M.A., Lavado, R.S., Perelman, S.B. y León, R.J.C. 2005. Asociación entre comunidades vegetales y suelos en el pastizal de la Pampa Deprimida. En: M. Oesterheld, M.R. Aguiar, C.M. Ghersa, y J.M. Paruelo (Eds.), La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando J.C. León. Facultad de Agronomía, Universidad de Buenos Aires, p. 113–127.

Belardi, J.B., Espinosa, S., Carvallo Marina, F. et al. 2010. Las cuencas de los Lagos Tar y San Martín (Santa Cruz, Argentina) y la dinámica del poblamiento humano del sur de Patagonia: integración de los primeros resultados. Magallania 38: 137–159.

Birks, H.J.B. y Birks, H.H. 1980. Quaternary Palaeoecology. The Blackburn Press, New Jersey, 289 p.

Birks, H.J.B. y Gordon, A.D. 1985. Numerical methods in Quaternary pollen analysis. Acad. Press, London/Orlando, 317 p.

Birks, H.J.B. y Line, J.M. 1992. The use of Rarefaction Analysis for estimating palynological richness from Quaternary Pollen-Analytical Data. The Holocene 2: 1–10.

Broström, A., Sugita, S. y Gaillard, M.J. 2004. Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweeden. Holocene 14: 368–381.

Bunting, M.J. 2003. Pollen–vegetation relationships in nonarboreal moorland taxa. Review of Palaeobotany and Palynology 125: 285–298.

Bunting, M.J. 2008. Pollen in wetlands: using simulations of pollen dispersal and deposition to better interpret the pollen signal. Biodiversity and Conservation 17: 2079–2096.

Bunting, M.J., Farrel, M., Broström, A. et al. 2013. Palynological perspectives on vegetation survey: a critical step for modelbased reconstruction of Quaternary land cover. Quaternary Science Reviews 82: 41–55.

Bunting, J., Gaillard, M-J., Sugita, S., Middleton, R. y Brostöm, A. 2004. Vegetation structure and pollen source area. The Holocene 15: 651–660.

Burry, L.S., Trivi de Mandri, M.E. y D’Antoni, H.L. 2007. Modern analogues and pastenvironments in central Tierra del Fuego, Argentina. Anales Instituto Patagonia (Chile) 35: 5–14.

Burry, L.S., Trivi de Mandri, M.E., Palacio P.I. y Lombardo, M.C. 2001. Relaciones polen-vegetación de algunos taxa de la estepa patagónica (Argentina). Revista Chilena de Historia Natural 74: 419–427.

Calcote, R. 1995. Pollen source area and pollen productivity: Evidence from forest hollow. Journal of Ecology 83: 591–602.

Castro, D.F., Rosseti, D.F. y Pessenda, L.C. 2010. Facies δ13C, δ15N and C/N analyses in a late Quaternary compound estuarine fill, northern Brazil and relation to sea level. Marine Geology 274: 135–150.

Chamberlain, A.C. 1955. Aspects of Travel and Deposition of Aerosol and Vapour Clouds. Atomic Energy Research Establishment Report HP/R 1261: 1–35.

Clark, J.S. 1988. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quaternary Research 30: 67–80.

Commerford, J.L., McLauchlan, K.K. y Sugita, S. 2013. Calibrating vegetation cover and grassland pollen assemblages in the Flint Hills of Kansas, USA. American Journal of Plant Sciences 4: 1–10.

Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A.F. y Krebs, P. 2009. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews 28: 555–576.

Davis, M.B. 1963. On the theory of pollen analysis. American Journal Davis, M.B. 2000. Palynology after Y2K – understanding the source area of pollen in sediments. Annual Review of Earth and Planetary Science 28: 1–18.

de Porras, M.E., Mancini, M.V. y Prieto, A.R. 2011. Modern pollen analysis in caves at the Patagonian steppe, Argentina. Review of Palaeobotany and Palynology 166: 335–343.

Duffin, K.I. y Bunting, M.J. 2008. Relative pollen productivity and fall speed estimates for southern African savanna taxa. Vegetation History and Archaeobotany 5: 507–525.

Echeverría, M.E. 2016. [Paleoecología de los bosques de Nothofagus del Sudoeste de Patagonia durante el Holoceno. Tesis Doctoral, Universidad Nacional de Mar del Plata, Argentina, 104 p. Inédita.].

Echeverría, M.E., Bamonte, F.P., Marcos M.A., Sottile, G.D. y Mancini, M.V. 2017. Palaeohydric balance variations in eastern Andean environments in southern Patagonia (48º-52.5ºS): Major trends and forcings during the last ca. 8000 cal yrs BP. Review of Palaeobotany and Palynology 246: 242–250.

Echeverría, M.E. y Mancini, M.V. 2018. Aportes del análisis de macrofósiles vegetales a la reconstrucción paleoecológica en relación con los registros polínicos de turbales del Holoceno, Patagonia argentina. En: A.R. Prieto (Ed.), Metodologías y estrategias del análisis palinológico del Cuaternario tardío. Publicación Electrónica de la Asociación Paleontológica Argentina 18: 120–130.

Echeverría, M.E., Sottile, G.D., Mancini, M.V. y Fontana, S.L. 2014. Nothofagus forest dynamics and palaeoenvironmental variations during the mid and late Holocene, in southwest Patagonia. The Holocene 24: 957–969.

Espinosa, S.L., Belardi, J.B., Barrientos, G. y Carballo, M. 2013. Poblamiento e intensidad de uso del espacio en la cuenca del Lago San Martín (Patagonia argentina): nuevos datos desde la margen norte. Comechingonia 17: 105–121.

Fernández, M. 2013. [Los paleombientes de Patagonia meridional, Tierra del Fuego e Isla de los Estados en los tiempos de las primeras ocupaciones humanas. Estudio basado en el análisis de diatomeas. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 218 p. Inédita.]. http://se ici.unlp.edu.ar/handle/10915/34395

Fernández, D.A., Santamarina, P.E., Tellería, M.C., Palazzesi, L. y Barreda, V.D. 2016. Pollen morphology of Nothofagus (Nothofagaceae, Fagales) and its phylogenetic significance. Acta Palaeobotanica 56: 223–245.

Fletcher, M.S. y Moreno, P.I. 2011. Zonally symmetric changes in the strength and position of the Southern Westerlies drove atmospheric CO2 variations over the past 14 ky. Geology 39: 419–422.

Fontana, S.L. y Bennett, K.D. 2012. Postglacial vegetation dynamics of western Tierra del Fuego. The Holocene 22: 1337–1350.

Ford, R.I. 1979. Paleoethnobotany in American Archaeology. En: M. Schiffer (Ed.), Advances in Archaeological Method and Theory, Vol 2. Academic Press, New York, p. 286–336.

Garreaud, R.D., López, P., Minvielle, M. y Rojas, M. 2013. Large Scale Control on the Patagonia Climate. Journal of Climate 26: 215–230.

Giesecke, T., Wolters, S., Jahns, S. y Brande, A. 2012. Exploring Holocene changes in palynological richness in northern Europe –did postglacial immigration matters? PLoS ONE 7: e51624.

Gilli, A., Ariztegui, D., Anselmetti, F.S. et al. 2005. Mid-Holocene strengthening of the Southern Westerlies in South America -Sedimentological evidences from Lago Cardiel, Argentina (49º S). Global and Planetary Change 49: 75–93.

Goring, S., Lacourse, T., Pellatt, M.G. y Mathewes, R.W. 2013. Pollen assemblage richness does not reflect regional plant species richness: a cautionary tale. Journal of Ecology 101: 1137–1145.

Gregory, P.H. 1945. The dispersion of air- borne spores. Transactions of the British Mycological Society 28: 26–72.

Haberzettl, T., Fey, M., Lücke, A. et al. 2005. Climatically induced lake level changes during the last two millennia as reflect in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). Journal of Paleolimnology 33: 283–302.

Heusser, C.J. 1971. Pollen and Spores of Chile. Arizona Press, Tucson, 167 p.

Heusser, C.J. 2003. Iceage southern Andes: a chronicle of paleoecological events. Developments in Quaternary Science 3. Elsevier, Amsterdam, 240 p.

Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S. y Brown, T.A. 2009. Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south central Brooks Range, Alaska. Ecological Monographs 9: 201–219.

Higuera, P.E., Peters, M.E., Brubaker, L.B. y Gavin, D.G. 2007. Understanding the origin and analysis of sediment charcoal records with a simulation model. Quaternary Science Reviews 26:
1790–1809.

Huber, U.M. y Markgraf, V. 2003. Holocene fire frequency and climate change at Río Rubens Bog, southern Patagonia. En: T.T. Veblen, W.L. Baker, G. Montenegro, y T.W. Swetnam (Eds.), Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, p. 357–380.

Huber, U.M., Markgraf, V. y Schäbitz, F. 2004. Geographical and temporal trends in Late Quaternary fire histories of Fuego-Patagonia, South America. Quaternary Science Reviews 23: 1079–1097.

Huusko, A. y Hicks, S. 2009. Conifer pollen abundance provides a proxy for summer temperature: evidence from the latitudinal forest limit in Finland. Journal of Quaternary Science 24: 522–528.

Iversen, J. 1941. Land occupation in Denmark’s Stone Age. Danmarks Geologiske Undersogelse II 66: 1–68.

Jackson, S.T. 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence. En: A. Traverse (Ed.), Sedimentation of organic particles. Cambridge University Press, Cambridge, p. 253–286.

Jackson, S.T. y Lyford, M.E. 1999. Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Botanical Review 65: 39–75.

Jacobson, G.L. y Bradshaw, R. 1981. The selection of sites for palaeoenvironmental studies. Quaternary Research 16: 80–96.

Jobbágy, E.G., Paruelo, J.M. y León, R.J.C. 1996. Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentina). Journal of Vegetation Science 7: 599–608.

Li, F., Gaillard, M.J., Sugita, S. et al. 2017. Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China. Vegetation History and Archaeobotany 26: 587–605.

Mancini, M.V. 1993. Recent pollen spectra from forest and steppe of South Argentina: a comparison with vegetation and climate data. Review of Paleobotany and Palynology 77: 129–142.

Mancini, M.V. 1998. Vegetational changes during Holocene in the Extra-Andean Patagonia, Santa Cruz Province, Argentina. Palaeogeography, Palaeoclimatology and Palaeoecology 138: 207–219.

Mancini, M.V., de Porras, M.E. y Bamonte, F.P. 2012. Southernmost South America Steppes: vegetation and its modern pollen assemblages representation. En: D.M. Germanno (Ed.), Steppe Ecosystems: Dynamics, Land Use and Conservation. Series: Environmental Science, Engineering and Technology. Nova Science Publishers, Nueva York, p. 141–156.

Marcos, M.A., Bamonte, F.P. y Mancini, M.V. 2017. Taxonomía polínica en sitios arqueológicos: relación con los efectos ambientales y con el uso de los sitios por los pobladores. 10º Jornadas de Arqueología de la Patagonia (Puerto Madryn), Libro de Resúmenes: 109.

Marcos, M.A., Espinosa, M.A, Mancini, M.V. y Favier Dubois, C.M. 2014. Múltiples indicadores de los cambios ambientales desde el Holoceno Medio en el Noreste de Patagonia, Argentina. Ameghiniana 51: 344–360.

Marcos, M.A. y Mancini, M.V. 2012.Modern pollen and vegetation relationships in Northeastern Patagonia (Golfo San Matías, Río Negro). Review of Palaeobotany and Palynology 171: 19–26.

Marcos, M.A., Mancini, M.V. y Favier Dubois, C.M. 2012. Middle-Late Holocene environmental changes in NE Patagonia inferred by palynological records and their relation to human occupation. The Holocene 22: 1271–1281.

Marcos, M.A. y Ortega, F.V. 2014. Paleoambientes y uso de los recursos leñosos por los grupos cazadores-recolectores del NE de Patagonia desde el Holoceno medio. Magallania 42: 147–163.

Mariani, M.M., Connor, S.E, Theuerkauf, M., Kuneš, P. y Fletcher, M.S. 2016. Testing quantitative pollen dispersal models in animal-pollinated vegetation mosaics: An example from temperate Tasmania, Australia. Quaternary Science Reviews 154: 214–225.

Markgraf, V. 1980. New data on the late and postglacial vegetational history of La Misión, Tierra del Fuego. 4º International Palynological Conference, (Lucknow), Proceedings 3: 68–74.

Markgraf, V. 1983. Late and Postglacial vegetational and paleoclimatic changes in subantarctic, temperate, and arid environments in Argentina. Palynology 7: 43–63.

Markgraf, V. 1991. Younger Dryas in southern South America?. Boreas 20: 63–69.

Markgraf, V. 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology and Palaeoecology 102: 53–68.

Markgraf, V. 2016. First Pollen Record in South America. Commentary: Die Zeichenschrift der Pollenstatistik. Frontiers Earth Science 4: 100.

Markgraf, V., Bradbury, P., Schwalb, A. et al. 2003. Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. The Holocene 13: 581–591.

Markgraf, V. y Huber, U.M. 2010. Late and postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Palaeogeography, Palaeoclimatology, Palaeoecology 297: 351–366.

Matthias, I., Swen Semmler, M.S. y Giesecke, T. 2015. Pollen diversity captures landscape structure and diversity. Journal of Ecology 103: 880–890.

Mayr, C., Fey, M., Haberzettl, T. et al. 2005. Paleoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 228: 203–227.

Mazier, F., Broström, A., Buttler, A., Gaillard, M.J., Sugita, S. y Vittoz, P. 2008. Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland). Vegetation History and Archaeobotany 17: 479–495.

Mazzoni, E. y Vázquez, M. 2004. Ecosistemas de mallines y paisajes de la Patagonia Austral (Provincia de Santa Cruz). INTA-GTZ, Buenos Aires, 63 p.

Mercer, J.H. y Ager, T. 1983. Glacial and floral changes in Southern Argentina since 14,000 years ago. National Geographyc Society, research reports 15: 457–477.

Moore, P.D., Webb, J.A. y Collinson, M.E. 1991. Pollen analysis. Blackwell Scientific Publications, Oxford, 205 p.

Moreno, P.I., Vilanova, I., Villa-Martínez, R., Garreaud, R.D., Rojas, M. y De Pol-Holz, R. 2014. Southern Annular Mode-like changes in southwestern Patagonia at centennial time scale over the last three millennia. Nature Communications 5: 4375.

Moy, C.M., Moreno, P.I. y Dunbar, R.B. 2009.Climate change in Southern South America during the last two millennia. En: F. Vimeux, F. Sylvestre, y M. Khodri (Eds.), Past climate variability in South America and surrounding regions. Developments in Paleoenvironmental Research Series 14. Springer Netherlands, p. 353–393.

Odgaard, B.V. 1999. Fossil pollen as a record of past biodiversity. Journal of Biogeography 26: 7–17.

Odgaard, B.V. 2001. Palaeoecological perspectives on pattern and progress in plant diversity and distribution adjustments: a comment on recent developments. Diversity and Distributions 7: 197–201.

Odgaard, B.V. 2007. Reconstructing past biodiversity development. En: S.A. Elias (Ed.), Encyclopedia of Quaternary Science. Elsevier, Amsterdam, p. 2508–2514.

Ohlendorf, C., Fey, M., Massaferro, J. et al. 2014. Late Holocene hydrology inferred from lacustrine sediments of Laguna Cháltel (southeastern Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 411: 229–248.

Paez, M.M., Schäbitz, F. y Stutz, S. 2001. Modern pollen-vegetation and isopoll maps in southern Argentina. Journal of Biogeography 28: 997–1021.

Parsons, R.W. y Prentice, I.C. 1981. Statistical approaches to R-values and the pollen vegetation relationship. Review of Palaeobotany and Palynology 32: 127–152.

Payne, R. y Mitchell, E.A.D. 2009. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. Journal of Paleolimnology 42: 483–495.

Pessenda, L.C.R. y Camargo, P.B. 1991. Datação radiocarbonica de amostras de interesse arqueológico e geológico por espectrometría de cintilação liquida de baxio nivel de radioação de fundo. Quimica nova 14: 98–103.

Pessenda, L.C.R, Saia, E.M.G., Gouveia, S.E.M. et al. 2010. Last millennium environmental changes and climate inferences in the Southeastern Atlantic forest, Brazil. Anais da Academia Brasileira de Ciências 82: 717–729.

Prentice, I.C. 1985. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 76–86.

Prentice, I.C. y Parsons, R.W. 1983. Maximum likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics 39: 1051–1057.

Prieto, A.R. 2018. Historia dela palinología del Cuaternario en la Argentina: una reseña a 90 años de sus comienzos. En: A.R. Prieto (Ed.), Metodologías y estrategias del análisis palinológico del Cuaternario tardío. Publicación Electrónica de la Asociación Paleontológica Argentina 18: 1–17

Prieto, A.R., Mancini, M.V., de Porras, M.E., Bamonte F.P. y Marcos, M.A. 2018. Arqueopalinología: una revisión del análisis polínico en el contexto de sitios arqueológicos de sociedades de cazadores-recolectores de la Argentina (32º–52º S). En: A.R. Prieto (Ed.), Metodologías y estrategias del análisis palinológico del Cuaternario tardío. Publicación Electrónica de la Asociación Paleontológica Argentina 18: 54–76.

Raffaele, E. 1999. Mallines: aspectos generales y problemas particulares. En: A.I. Malvárez (Ed.), Tópicos sobre humedales subtropicales y templados de Sudamérica. UNESCO Office Montevideo and Regional Bureau for Science in Latin America and the Caribbean, Montevideo, p. 25–31.

Recasens, C., Ariztegui, D., Gebhardt, C. et al. 2012. New insights into paleoenvironmental changes in Laguna Potrok Aike, southern Patagonia, since the Late Pleistocene: the PASADO multiproxy record. The Holocene 22: 1323–1335.

Schäbitz, F. 2003. Estudios polínicos del Cuaternario en las regiones áridas del sur de Argentina. Revista del Museo Argentino de Ciencias Naturales 5: 291–299.

Schäbitz, F., Wille, M., Francois, J.P. et al. 2013. Reconstruction of palaeoprecipitation based on pollen transfer functions - the record of the last 16 ka from Laguna Potrok Aike, southern Patagonia. Quaternary Science Reviews 71: 175–190.

Schüler, L. y Behling, H. 2011. Poaceae pollen grain size as a tool to distinguish past grasslands in South America: a new methodological approach. Vegetation History and Archaeobotany 20: 83–96.

Seddon, A.W.R, Mackay, A.W, Baker, A.G. et al. 2014. Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology 102: 256–267.

Sottile, G.D. 2014. [Historia de la vegetación vinculada a disturbios de incendios durante el Holoceno en el ecotono bosque-estepa de Santa Cruz, Argentina. Tesis Doctoral, Facultad de Ciencias Exactas y Naturales, Universidad de Mar del Plata, 145 p. Inédita.].

Sottile, G.D., Bamonte, F.P., Mancini, M.V. y Bianchi, M.M. 2012. Insights into Holocene vegetation and climate changes at the Southeastern side of the Andes: Nothofagus Forest and Patagonian steppe fire records. The Holocene 22: 1309–1322.

Sottile, G.D., Giache, Y. y Bianchi, M.M. 2018. Reconstrucción del régimen de incendios en ecosistemas templados patagónicos sobre la base de registros de carbón sedimentario (charcoal) y polen durante el Cuaternario tardío. Tendencias metodológicas, resultados y perspectivas. En: A.R. Prieto (Ed.), Metodologías y estrategias del análisis palinológico del Cuaternario tardío. Publicación Electrónica de la Asociación Paleontológica Argentina 18: 102–119.

Sottile, G.D., Tonello, M.S. y Mancini, M.V. 2016. Potentiality of past vegetation land cover reconstruction in forest high Andean steppe ecotone of Southern Patagonia, Argentina - First results. 14º International Palynological Congress, 10º International Organisation of Palaeobotany Conference (Salvador, Brasil), Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología 16: 149–150.

Storme, N. y Geelen, D. 2014. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant, Cell & Environment 37: 1–18.

Sugita, S. 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology 82: 881–897.

Tonello, M.S., Mancini, M.V. y Seppä, H. 2009. Quantitative reconstruction of Holocene precipitation changes in Southern Patagonia. Quaternary Research 72: 410–420.

Villa-Martínez, R. y Moreno, P.I. 2007.Pollen evidence for variations in the southern margin of the westerly winds in SW Patagonia over the last 12,600 years. Quaternary Research 68: 400–409.

Villa-Martínez, R., Moreno, P.I. y Valenzuela, M.A. 2012. Deglacial and postglacial vegetation changes on the eastern slopes of the central Patagonian Andes (47°S). Quaternary Science Reviews 32: 86–99.

von Post, L. 1929. Die Zeichenschrift der Pollenstatistik. Geologiska Föreningen Förhandlingar 51: 543–565. Doi:10.1080/11035892909449566.

von Stedingk, H., Fyfe, R. y Allard, A. 2008. Pollen productivity estimates for the reconstruction of past vegetation at the forest tundra ecotone. Holocene 18: 323–332.

Whitlock, C. y Larsen, C. 2001. Charcoal as a fire proxy. En: J.P. Smol, H.J.B., Birks, y W.M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Kluwer Academic Publishers, Dordrecht, p. 75–97.

Wille, M., Maidana, N.I., Schäbitz, F. et al. 2007. Vegetation and climate dynamics in southern South America: The microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Review of Palaeobotany and Palynology 146: 234–246.
Sección
Volumen Temático
Derechos de autor
Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.

Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo licenciado bajo una licencia CC Attribution-NonCommercial 4.0 que permite a otros compartir el trabajo con el reconocimiento de la autoría y de la publicación inicial en esta revista.