DISTRIBUCIÓN PALEOBIOGEOGRÁFICA MÁS AMPLIA DE TORTUGAS BOTREMIDIDAS EN EL NORTE DE SUR AMÉRICA DURANTE EL PALEOCENO–EOCENO

Autores/as

  • Edwin-Alberto Cadena PaleoNeo (FCN, Universidad del Rosario)|Smithsonian Tropical Research Institute|Field Museum of Natural History https://orcid.org/0000-0003-3038-567X
  • Byron Benítez Museo de los Andes de Socha (MAS)
  • Francisco Emmanuel Apen Dept. of Earth Science, University of California Santa Barbara (UCSB)|Dept. of Geosciences, Princeton University https://orcid.org/0000-0002-1209-3844
  • James Leahey Crowley Isotope Geology Laboratory, Boise State University
  • John Cottle Dept. of Earth Science, University of California Santa Barbara (UCSB) https://orcid.org/0000-0002-3966-6315
  • Carlos Jaramillo Smithsonian Tropical Research Institute https://orcid.org/0000-0002-2616-5079

DOI:

https://doi.org/10.5710/PEAPA.14.02.2024.499

Palabras clave:

Testudines, Colombia, Paleobiogeografía, Bothremydidae, Formación Arcillolitas de Socha

Resumen

Bothremydidae fue uno de los grupos de tortugas de cuello lateral (pleurodiras) más diversos y extendidos durante el Cretácico y parte del Paleógeno. En América del Sur, el registro Paleógeno de bothremididos se limita a Puentemys mushaisaensis de la Formación Cerrejón del Paleoceno medio–tardío en Colombia, Inaechelys pernambucensis del Paleoceno de Brasil, y Motelomama olssoni del Eoceno temprano en Perú. Aquí, describimos dos caparazones de P. mushaisaensis y varios huesos aislados atribuidos a este taxón de la Formación Arcillolitas de Socha del Paleoceno superior y Eoceno inferior, ubicada en la Región de Socha, Departamento de Boyacá en Colombia. La datación U-Pb de circones detríticos de dos niveles de esta formación indica edades máximas de deposición de 56.83±0.04 Ma y 57.2±0.5 Ma para el intervalo de areniscas guía de la formación. La nueva presencia de P. mushaisaensis en la región de Socha, al menos 500 km al sur de Cerrejón, indica una distribución biogeográfica más amplia de la herpetofauna del Paleoceno en el norte de América del Sur, posiblemente facilitada por una topografía baja y la conectividad de ecosistemas a través de un corredor faunístico.

Citas

Alvarado, B., and Sarmiento, R. (1944). Informe geológico general sobre los yacimientos de hierro, carbón y caliza de la región de Paz de Río, departamento de Boyacá. Bogotá, Colombia: Servicio Geológico Nacional, Bogotá.

Batsch, A. J. G. C. (1788). Versuch einer Anleitung zur Kenntniss und Geschichte der Thiere und Mineralien. Erster Theil. Akademische Buchhandlung, Jena.

Baur, G. (1891). Notes on some little-known American fossil tortoises. Proceedings of the Academy of Natural Science of Philadelphia, 43, 411–430.

Bayona, G. (2018). The onset of the mountain uplift in the northern Andes: A perspective based on Coniacian to Paleocene tectono-sedimentary studies. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, 42, 364–378.

Bayona, G., Baquero, M., Ramírez, C., Tabares, M., Salazar, A. F., Nova, G., Duarte, E., Pardo, A., Plata, A., Jaramillo, C., Rodríguez, G., Caballero, V., Cardona, A., Montes, C., Gómez-Marulanda, S., and Cárdenas-Rozo, A. (2021). Unraveling the widening of the earliest Andean northern orogen: Maastrichtian to early Eocene intra-basinal deformation in the northern Eastern Cordillera of Colombia. Basin Research, 33, 809–845. https://doi.org/10.1111/bre.12496

Cadena, E.A., Bloch, J.I., and Jaramillo, C.A. (2012). New bothremydid turtle (Testudines, Pleurodira) from the Paleocene of northeastern Colombia. Journal of Paleontology, 86, 688–698. https://doi.org/10.1666/11-128R1.1

Cadena, E.A., Scheyer, T.M., Carrillo-Briceño, J.D., Sánchez, R., Aguilera-Socorro, O.A., Vanegas, A., Pardo, M., Hansen, D.M., Sánchez-Villagra, M.R. (2020). The anatomy, paleobiology, and evolutionary relationships of the largest extinct side-necked turtle. Science Advances 6, eaay4593. https://doi.org/10.1126/sciadv.aay4593

Cottle, J. M., Kylander-Clark, A. R. C., and Vrijmoed, J. C. (2012). U-Th/Pb geochronology of detrital zircon and monazite by Single Shot Laser Ablation Inductively Coupled Plasma Mass Spectrometry (SS-LA-ICPMS). Chemical Geology, 332–333, 136–147. https://doi.org/10.1016/j.chemgeo.2012.09.035

Cottle, J. M., Burrows, A. J., Kylander-Clark, A. R. C., Freedman, P. A. and Cohen, R. (2013). Enhanced sensitivity in laser ablation multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 28, 1700–1706.

Cope, E. D. (1864). On the limits and relations of the Raniformes. Proceedings of the Academy of Natural Science of Philadelphia, 16, 181–183.

Ferrón, H. G., Martínez-Pérez, C., and Botella, H. (2017). The evolution of gigantism in active marine predators. Historical Biology, 30, 712–716. https://doi.org/10.1080/08912963.2017.1319829

Gaffney, E. S., Tong, H., and Meylan, P. A. (2006). Evolution of the side-necked turtles: the families Bothremydidae, Euraxe¬mydidae, and Araripemydidae. Bulletin of the American Museum of Natural History, 300, 1–700. https://doi.org/dgxpvn

Jaramillo, C. A., and Dilcher, D. L. (2001). Middle Paleogene palynology of central Colombia, South America: A study of pollen and spores from tropical latitudes. Palaeontographica Abt. B, 258, 87–213.

Kylander-Clark, A. R. C., Hacker, B. R., and. Cottle, J. M (2013). Laser-ablation split-stream ICP petrochronology. Chemical Geology, 345, 99–112. https://doi.org/10.1016/j.chemgeo.2013.02.019

Lapparent de Broin, F. de. (2000). African chelonians from the Jurassic to the present. A preliminary catalog of the African fossil chelonians. Palaeontologia Africana, 36, 43–82.

Lapparent de Broin, F. de., Métais, G., Bartolini, A., Brohi, I. A., Lashari, R. A., Marivaux, L., Merle, D., Warar, M. A. and Solangi S. H. (2021). First report of a bothremydid turtle, Sindhochelys ragei n. gen., n. sp., from the early Paleocene of Pakistan, systematic and palaeobiogeographic implications. In Steyer, J.-S., Augé, M. L. and Métais G. (eds), Memorial Jean-Claude Rage: A life of paleoherpetologist. Geodiversitas, 43 (25), 1341–1363. https://doi.org/10.5252/geodiversitas2021v43a25.

Maher, A. E., Burin, G., Cox, P. G., Maddox T. W., Maidment S. C. R., Cooper, N., Schachner E., and Bate, K. T. (2022). Body size, shape and ecology in tetrapods. Nature Communications, 13, 4340. https://doi.org/10.1038/s41467-022-32028-2

Mattinson, J. M. (2005). Zircon U-Pb chemical abrasion ("CA-TIMS") method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011

Paleobiology Database, accessed November 15, (2023). https://paleobiodb.org/#/

Pérez-García, A. (2016). A new turtle taxon (Podocnemidoidea, Bothremydidae) reveals the oldest known dispersal event of the crown Pleurodira from Gondwana to Laurasia. Journal of Systematic Palaeontology, 15 (9), 1–23. https://doi.org/10.1080 /14772019.2016.1228549

Pérez-García, A. (2016). New genera of Taphrosphyina (Pleurodira, Bothremydidae) for the French Maastrichtian ‘Tretosternum’ ambiguum and the Peruvian Ypresian ‘Podocnemis’ olssoni. Historical Biology. https://doi.org/10.1080/08912963.2018.1506779

Pérez-García, A. (2018). New information on the Cenomanian bothremydid turtle Algorachelus based on new, well-preserved material from Spain. Fossil Record, 21, 119–135. https://doi. org/10.5194/fr-21-119-2018

Pérez-García, A. (2020). First evidence of a bothremydid turtle (crown Pleurodira) in the middle Cretaceous of Castile and Leon (Spain). Journal of Iberian Geology. https://doi.org/10.1007/s41513-020-00146-9

Pérez-García, A., Antunes, M. T., Barroso-Barcenilla, F., Cal¬lapez, P. M., Segura, M., Soares, A. F. and Torices, A. (2017). A bothremydid from the middle Cenomanian of Portugal identified as one of the oldest pleurodiran turtles in Laurasia. Cretaceous Research, 78, 61–70. https://doi.org/10.1016/j.cretres.2017.05.031

Schmidt, K. P. (1931). A fossil turtle from Peru. Field Museum Natural History Geolo. Ser. 4, 251–254.

Scheyer, T. M., Aguilera, O. A., Delfino, M., Fortier, D. C., Carlini, A. A., Sánchez, R., Carrillo-Briceño, J. D., Quiroz, L., Sánchez-Villagra, M.R. (2013). Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. Nature Communications, 4, 1907. https://doi.org/10.1038/ncomms2940

Ulloa, C., and Rodríguez, E. (2003). Memoria de la plancha 172 Paz de Río, Bogotá, Colombia, INGEOMINAS. https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblion

Van Der Hammen, T. (1957). Estratigrafía palinológica de la Sabana de Bogotá, Cordillera Oriental de Colombia. Bogotá, Colombia, Boletín Geológico, Servicio Geológico Nacional.

Velandia-Angarita, O. R., Mariño-Martínez, J. E. and Giraud-López, M. J. (2023). Litoestratigrafía y bioestratigrafía como herramientas de exploración de fósiles de vertebrados en Socha (Colombia) Revista EIA, 20(40), 1–20. https://doi.org/10.24050/reia.v20i40.1700

Vermeij, G. J. (2016). Gigantism and its implications for the history of life. PLOS ONE, 11, e0146092.

Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H. (2017). Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? Climate of the Past, 13(9), 1129–1152. https://doi.org/10.5194/cp-13-1129-2017

Publicado

04/24/2024

Número

Sección

Artículos