GEOCHEMICAL SIGNALS IN PALEOGENE PENGUINS FROM SEYMOUR ISLAND (ISLA MARAMBIO), ANTARCTIC PENINSULA
DOI:
https://doi.org/10.5710/PEAPA.14.11.2022.443Keywords:
Sphenisciformes, ICP-MS analysis, fossil-diagenesis, taphonomy, Weddell sea, AntarcticaAbstract
Trace elements, particularly rare earth elements (REE), are widely used as proxies to reconstruct paleoenvironmental and taphonomic conditions. We traced these elements in fossil penguin bones collected along the Paleogene sequence exposed in Seymour Island (=Isla Marambio) to test them as indicators of the tectonic changes to which this region was exposed. The results indicated the contents of REE in thirteen samples of the analyzed bone tissues. The negative europium anomaly in the samples from Bartonian and Priabonian beds reflects regional events. This signal coincides in time with the opening of the Drake Passage, and with the tectonic changes that occurred between the end of the Eocene and the beginning of the Oligocene, between the western margin of South America and the Antarctic Peninsula.
References
Acosta Hospitaleche, C., & Reguero, M. (2010). First articulated skeleton of Palaeeudyptes gunnari from the late Eocene of Seymour (= Marambio) Island (Antarctica). Antarctic Sciences, 22(3), 289–298. https://doi.org/10.1017/S0954102009990769
Acosta Hospitaleche, C., & Reguero, M. (2014). Palaeeudyptes klekowskii, the most complete penguin skeleton found in the Eocene of Antarctica: taxonomic remarks. Geobios, 47(3), 77–85. https://doi.org/10.1016/j.geobios.2014.03.003
Acosta Hospitaleche, C., & Olivero, E. (2016). Re-evaluation of the fossil penguin Palaeeudyptes gunnari from the Eocene Leticia Formation, Argentina: Additional material, systematics and palaeobiology. Alcheringa, 40(3), 373–382. https://doi.org/10.1080/03115518.2016.1144994
Acosta Hospitaleche, C., Reguero, M., & Scarano, A. (2013). Main pathways in the evolution of Antarctic fossil penguins. Journal of South American Earth Sciences, 43, 101–111. https://doi.org/10.1016/j.jsames.2013.01.006
Acosta Hospitaleche, C., Pérez, L. M., Marenssi, S, & Reguero, M. (2016). Taphonomic analysis and paleobiological observation of Crossvallia unienwillia Tambussi et al. 2005: significance of the oldest penguin record of Antarctica. Ameghiniana, 53(3), 282–295. https://doi.org/10.5710/AMGH.24.08.2015.2917
Acosta Hospitaleche, C., Jadwiszczak, P., Clarke, J., & Cenizo, M. (2019a). The fossil record of birds from the James Ross Basin, West Antarctica. Advances in Polar Sciences, 30(3), 251–273. http://dx.doi.org/10.13679/j.advps.2019.0014
Acosta Hospitaleche, C., Haidr, N., Paulina Carabajal, A. & Reguero, M. (2019b). First skull of Anthropornis grandis associated with postcranial elements. Comptes Rendus Palevol, 18(6), 99–617. https://doi.org/10.1016/j.crpv.2019.06.003
Acosta Hospitaleche, C., De los Reyes, M., Santillana, S., & Reguero, M. (2020). First fossilized skin of a giant penguin from the Eocene of Antarctica. Lethaia, 53(3), 409–420. https://doi.org/10.1111/let.12366
Andersson, J. G. (1906): On the geology of Graham Land. Bulletin of the Geological Institution of the University of Upsala, 7, 19–71.
Askin, R. A. (1997). Eocene? Earliest Oligocene terrestrial palynology of Seymour Island, Antarctica. In C. A. Ricci, (Ed.), The Antarctic Region: Geological Evolution and Processes (pp. 993–996). Proceedings of the VII International Symposium on Antarctic Earth Sciences, Siena, 1995. Terra Antartica Publication, Siena.
Bibby, J. (1966). The stratigraphy of part of north-east Graham Land and the James Ross Island group. British Antarctic Survey Scientific Reports, 53, 1–37.
Blokland, J. C., Reid, C. M., Worthy, T. H., Tennyson, A. J. D., Clarke, J. A., & Scofiel, R. P. (2019). Chatham Island Paleocene fossils provide insight into the palaeobiology, evolution, and diversity of early penguins (Aves, Sphenisciformes). Palaeontologia Electronica, 22.3.78. https://doi.org/10.26879/1009
Bosio, G., Gioncada, A., Gariboldi, K., Bonaccorsi, E., Collareta, A., Pasero, M., Di Celma, C., Malinverno, E., Urbina, M., & Bianucci, G. (2021). Mineralogical and geochemical characterization of fossil bones from a Miocene marine Konservat-Lagerstätte. Journal of South American Earth Sciences, 105, 102924. https://doi.org/10.1016/j.jsames.2020.102924
Brown, B., Gaina, C., & Müller, D. (2006). Circum-Antarctic palaeobathymetry: Illustrated examples from Cenozoic to recent times. Palaeogeography, Palaeoclimatolgy, Palaeoecolgy, 231, 158–168. https://doi.org/10.1016/j.palaeo.2005.07.033
Case, J. (1988). Paleogene floras from Seymour Island, Antarctic Peninsula. In Geology and Paleontology of Seymour Island, Antarctica Peninsula. In R. M. Feldmann & M.O. Woodburne (Eds.) Geological Society of America Memoir, 169, 523–530.
Chavagnac, V., Milton, J. A., Green, D. R. H., Breuer, J., Bruguier, O., Jacob, D. E., Jong, T., Kamenov, G. D., Le Huray, J., Liu, Y., Palmer, M. R., Pourtalès, S., Roduhskin, I., Soldati, A., Trueman, C. N., & Yuan, H. (2007). Towards the development of a fossil bone geochemical standard: An inter-laboratory study. Analytica Chimica Acta, 599(2), 177–190. https://doi.org/10.1016/j.aca.2007.08.015
Cook, P. J., & Shergold, J. H. (2005). Phosphate Deposits of the World. Proterozoic and Cambrian Phosphorites, vol. 1. Cambridge University Press, Cambridge.
De Baar, H. J., Bacon, M. P., Brewer, P. G., & Bruland, K. W. (1985). Rare earth elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49(9), 1943–1959.
Decrée, S., Herwartz, D., Mercadier, J., Miján, I., de Buffrénil, V., Leduc, T., & Lambert, O. (2018). The post-mortem history of a bone revealed by its trace element signature: the case of a fossil whale rostrum. Chemical Geology, 477, 137–150. https://doi.org/10.1016/j.chemgeo.2017.12.021
Del Valle, R. A., Elliot, D. H. & MacDonald, D. I. M. (1992). Sedimentary basins on the east flank of the Antarctic Peninsula: proposed nomenclature. Antarctic Science, 4(4), 477–478. https://doi.org/10.1017/S0954102092000695
Eagles, G. & Jokat, W. (2014). Tectonic reconstructions for paleobathymetry in Drake passage. Tectonophysics, 611, 28–50. https://doi.org/10.1016/j.tecto.2013. 11.021
Eagles, G., Livermore, R., & Morris, P. (2006). Small basins in the Scotia Sea: The Eocene Drake passage gateway. Earth and Planetary Science Letters, 242(3–4), 343–353. https://doi.org/10.1016/j.epsl.2005.11.060
Elliot, D. H. & Trautman, T. A. (1982). Lower Tertiary strata on Seymour Island, Antarctic Peninsula. In C. Craddock (Ed.), Antarctic Geoscience (pp. 287–297). University of Wisconsin Press, Madison.
Elliot, D. H., Rinaldi, C. A., Zinsmeister, W., Trautman, T. A., Bryant, W. A., & Del Valle, R. A. (1975). Geological investigations on Seymour Island, Antarctic Peninsula. Antarctic Journal of the United States, 10, 182–186.
Feldman, R., & Woodbume, M. (1988). Geology and Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America, Memoir 169. https://doi.org/10.1130/MEM169
Fretzdorff, S., Worthington, T. J., Haase, K. M., Hekinian, R., Franz, L., Keller, R. A., & Stoffers, P. (2004): Magmatism in the Bransfield Basin: Rifting of the South Shetland Arc?. Journal of Geophysical Research, 109(B12208), 1–19. https://doi.org/10.1029/2004JB003046
Gómez-Peral, L. E., Kaufman, A. J., & Poiré, D. G. (2014). Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System, Argentina. Precambrian Research, 252, 88–106. https://doi.org/10.1016/j.precamres.2014.07.009
Gómez-Peral, L.E., Arrouy, M.J., Poiré, D.G., Cavarozzi, C.E. (2019). Redox-sensitive element distribution in the Neoproterozoic Loma Negra Formation in Argentina, in the Clymene Ocean context. Precambrian Research, 332, 105384. https://doi.org/10.1016/j.precamres.2019.105384
Ivany, L. C., van Simaeys, S., Domack, E. W., & Samson, S. D. (2006). Evidence for an earliest Oligocene ice sheet on the Antarctic Peninsula. Geology, 34(5), 377–380. https://doi.org/10.1130/G22383.1
Harwood, D. M. (1988). Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula. In R. M. Feldman & M. O. Woodburne (Eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula (pp. 55–129). Geological Society of America Memoir 169. https://doi.org/10.1130/MEM169
Henderson, P., Marlow, C. A., Molleson, T. I., & Williams, C. T. (1983). Patterns of chemical change during bone fossilization. Nature, 306, 358–360. https://doi.org/10.1038/306358a0
Herwartz, D., Tütken, T., Münker, C., Jochum, K. P., Stoll, B., & Sander, P. M. (2011). Timescales and mechanisms of REE and Hf uptake in fossil bones. Geochimica et Cosmochimica Acta, 75(1), 82–105. https://doi.org/10.1016/j.gca.2010.09.036
Hombron, J. B., & Jacquinot, H. (1841). Description de plusieurs oiseaux nouveaux ou peu connus, provenant de l'expedition autour du monde faite sur les corvettes l'Astrolabe et la Zelee. Annales des sciences naturelles, 16(2), 312–320.
Ivany, L., van Simaeys, S., Domack, E., & Samson, S. (2006). Evidence for an earliest Oligocene ice sheet on the Antarctic Peninsula. Geology, 34(5), 377–380.
Janssens, K., Vincze, L., Vekemans, B., Williams, C. T., Radke, M., Haller, M., & Knochel, A. (1999). The non-destructive determination of REE in fossilized bone using synchrotron radiation induced K-line X-ray microflourescence analysis. Fresenius Journal of Analytical Chemistry, 363(4), 126–413. https://doi.org/10.1007/s002160051212
Jordan, T. A., Riley, T. R., & Siddoway, C. S. (2020). The geological history and evolution of West Antarctica. Nature Reviews Earth & Environment, 1, 117–133. https://doi.org/10.1038/s43017-019-0013-6
Lagabrielle, Y., Goddéris, Y., Donnadieu, Y., Malavieille, J., & Suarez, M. (2009). The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planetary Science Letters, 279, 197–211. https://doi.org/10.1016/j.epsl.2008.12.037
Lawrence, M. G., Kenneth, A. G., Collerson, D., & Kamber, B. S. (2006). Direct quantification of rare earth element concentrations in natural waters by ICP-MS. Applied Geochemistry, 21(5), 839–848. https://doi.org/10.1016/j.apgeochem.2006.02.013
Lawver, L. A., & Gahagan, L. M. (2003). Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1–2), 11–37. https://doi.org/10.1016/S0031-0182(03)00392-4
Livermore, R., Nankivel, A., Eagles, G., & Morris, P. (2005). Paleogene opening of Drake passage. Earth Planetary Science Letters, 236(1–2), 459–470. https://doi.org/10.1016/j.epsl.2005.03.027
Macellari, C. E. (1988). Stratigraphy, sedimentology and paleoecology of Upper Cretaceous/Paleocene shelf deltaic sediments of Seymour Island. In Geology and Paleontology of Seymour Island, Antarctic Peninsula. In R. M. Feldmann & M.O. Woodburne (Eds.) Geological Society of America Memoir, 169, 253–53.
Marenssi, S. A. (1995). Sedimentología y paleoambientes de sedimentación de la Formación La Meseta, Isla Marambio, Antártica. [Tesis Doctoral, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires]. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n2775_Marenssi.pdf
Marenssi, S. A., & Elliot, D. H. (1992). The Paleogene of the James Ross Basin, Antarctica. Simposio Paleógeno de Sudamérica (Abstracts n° 26). Punta Arenas.
Marenssi, S. A., & Santillana, S. N. (1994). Unconformity-bounded units within the La Meseta Formation, Seymour Island, Antarctica: a preliminary approach. XXI Polar Symposium (pp. 33–37). Warszawa.
Marenssi, S. A., Santillana, S. N., & Rinaldi, C. A. (1998). Stratigraphy of the La Meseta Formation (Eocene), Marambio (Seymour) Island, Antarctica. Asociación Paleontológica Argentina, Publicación Especial, 5, 137–146.
Marenssi, S. A., Net, L. I., & Santillana, S. N. (2002). Provenance, environmental and paleogeographic controls on sandstone composition in an incised-valley system: The Eocene La Meseta Formation, Seymour Island, Antarctica. Sedimentary Geology, 150(3–4), 301–321. https://doi.org/10.1016/S0037-0738(01)00201-9
Marenssi, S. A., Santillana, S. N., & Bauer, M. (2012). Estratigrafía, petrografía sedimentaria y procedencia de las formaciones Sobral y Cross Valley (Paleoceno), Isla Marambio (Seymour), Antártica. Andean Geology, 39(1), 67–91.
MacDonald, D. I. M., Baker, P. F. Garrett, S. W., Ineson, J. R., Pirrie, D., Storey, B. C., Whitham, A. G., Kinghorn, R. R. F., & Marshall, J. E. A. (1988). A preliminary assessment of the hydrocarbon potential of the Larsen Basin, Antarctica. Marine and Petroleoum Geology, 5, 34–53. https://doi.org/10.1016/0264-8172(88)90038-4
McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In B. R. Lipin & G. A. McKay (Eds.), Geo-chemistry and Mineralogy of Rare Earth Elements (pp. 169–200). Reviews in Mineralogy & Geochemistry, 21.
Montes, M., Santillana, S. N., & Marenssi, S. A. (2007). Secuencias de relleno del valle incidido en la Formación Cross Valley. Paleoceno superior de la isla Marambio (Mar de Weddell, Antártica). Simposio Argentino, No. 6 y Latinoamericano sobre Investigaciones (GEORE830: 4p., CD-ROM). Buenos Aires.
Montes, M., Nozal, F., Santillana, S. N., Marenssi, S. A., Olivero, E. B., & Maestro, A. (2008). Mapa geológico 1:20.000 de la isla Marambio (mar de Weddell, Antártida). Congreso Geológico de España, N° 7, Las Palmas. Geotemas, 10, 709–712.
Montes, M., Nozal, F., Santillana, S. N., Marenssi, S. A., & Olivero, E. (2013). Mapa geológico de la Isla Marambio (Seymour), Antártica. Serie Cartográfica Geocientífica Antártica; 1:20000, 1ª edición. Madrid-Instituto Geológico y Minero de España; Buenos Aires. Instituto Antártico Argentino.
Montes, M., Nozal, F., Olivero, E., Gallastegui, G., Santillana, S., Maestro, A., López Martínez, J., González, L., & Martín-Serrano, A. (2019). Geología y Geomorfología de isla Marambio (Seymour). [Geology and Geomorphology of Marambio Island]. In M. Montes, Nozal, F., & S. Santillana (Eds.), Serie Cartográfica Geocientífica Antártica; 1:20.000, 1ª edición. Acompañado de mapas. (pp. 300). Instituto Geológico y Minero de España, Madrid; Instituto Antártico Argentino, Buenos Aires.
Olivero, E. B., Ponce, J. J., & Martinioni, D. R. (2008). Sedimentology and architecture of sharp-based tidal sandstones from the Upper Marambio Group, Maastrichtian of Antarctica. Sedimentary Geology, 210, 11–26. https://doi.org/10.1016/j.sedgeo.2008.07.003
Olivero, E. B., Torres Carbonell, P. J., Svojtka, M., Fanning, M., Hervé, F., & Nývlt, D. (2020). Eocene volcanism in the Fuegian Andes: Evidence from petrography and detrital zircons in marine volcaniclastic sandstones. Journal of South American Earth Sciences, 104, 102853. https://doi.org/10.1016/j.jsames.2020.102853
Pike, A. W. G., Hedges, R. E. M., & Van Calsteren, P. (2002). U-series dating of bone using the diffusion–adsorption model. Geochimica et Cosmochimica Acta, 66(24), 4273–4286. https://doi.org/10.1016/S0016-7037(02)00997-3
Presslee, S., Penkman, K., Fischer, R., Slidel-Richards, E., Southon, J., Acosta Hospitaleche, C., Collins, M., & MacPhee, R. (2020). Assessment of different screening methods for selecting palaeontological bone samples for peptide sequencing. Journal of Proteomics, 230. https://doi.org/10.1016/j.jprot.2020.103986
Reguero, M. A., & Goin, F. J. (2021). Paleogeography and biogeography of the Gondwanan final breakup and its terrestrial vertebrates: New insights from southern South America and the “double Noah's Ark” Antarctic Peninsula. Journal of South American Earth Sciences, 108, 103358. https://doi.org/10.1016/j.jsames.2021.103358
Reguero, M. A., Marenssi, S. A., & Santillana, S. N. (2002). Antarctic Peninsula and South America (Patagonia) Paleogene terrestrial faunas and environments: biogeographic relationships. Palaeogeography, Palaeoclimatology, Palaeoecolgy, 179(3–4), 189–210. https://doi.org/10.1016/S0031-0182(01)00417-5
Reguero, M., Goin, F., Acosta Hospitaleche, C., Dutra, T., & Marenssi, S. (2013). Paleogene terrestrial vertebrates of the James Ross basin. In M. Reguero, F. Goin, C. Acosta Hospitaleche, T. Dutra & S. Marenssi (Eds.), Late Cretaceous/Paleogene West Antarctica Terrestrial Biota and its Intercontinental Affinities (pp. 74–88). Springer Dordrecht. https://doi.org/10.1007/978-94-007-5491-1_1.
Reguero, M. A., Gelfo, J. N., López, G. M., Bond, M., Abello, A., Santillana, S N., & Marenssi, S. A. (2014). Final Gondwana breakup: The Paleogene South American native ungulates and the demise of the South America–Antarctica land connection. Global Planet. Change, 123, (Part B), 400–413. https://doi.org/10.1016/j.gloplacha.2014.07.016
Reynard, B., Lécuyer, C., & Grandjean, P. (1999). Crystal–chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155(3–4), 233–241. https://doi.org/10.1016/S0009-2541(98)00169-7
Rinaldi, C. A., Massabie, A., Morelli, J., Rosenman, L. H., & Del Valle, R. A. (1978). Geología de la isla Vicecomodoro Marambio, Antártica. Contribución Instituto Antártico Argentino, 217, 1–37.
Rudnick, R. L., & Gao, S. (2003). Vol. 3: The Crust, 3.01—The Composition of the Continental Crust. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (pp. 1–64). Elsevier-Pergamon, Oxford.
Sadler, P. M. 1988. Geometry and stratification of uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula. In R. M. Feldman & M. O. Woodburne (Eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula (pp. 303–320). Geological Society of America Memoir 169. https://doi.org/10.1130/MEM169
Sallaberry, M. A., Yury-Yáñez, R. E., Otero, R. A., Soto-Acuña, S., & Torres, T. (2010). Eocene birds from the western margin of southernmost South America. Journal of Paleontology, 84, 1061–1070. https://doi.org/10.1666/09-157.1
Shields, G., & Stille, P. (2001). Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1–2), 29–48. https://doi.org/10.1016/S0009-2541(00)00362-4
Sijp, W. P., & England, M. H. (2004). Effect of the Drake Passage through flow on global climate. Journal of Physical Oceanography, 34, 1254–1266. https://doi.org/10.1175/1520-0485(2004)034<1254:EOTDPT>2.0.CO;2
Slack, K. E., Jones, C. M., Ando, T., Harrison, G. L., Fordyce, R. E., Arnason, U., & Penny, D. (2006). Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Molecular biology and evolution, 23(6), 1144–1155. https://doi.org/10.1093/molbev/msj124
Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in the ocean basins (pp. 313–345). Geological Society of London 42.
Tambussi, C. P., Reguero, M. A., Marenssi, S. A., & Santillana, S. N. (2005). Crossvallia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the Late Paleocene of Antarctica. Geobios, 38, 667–675. https://doi.org/10.1016/j.geobios.2004.02.003
Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evo-lution. Blackwell Scientific, Oxford.
Toggweiler, J. R., & Bjornsson, H. (2000). Drake passage and paleoclimate. Journal of Quaternary Science, 15, 319–328.
Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarkson, M. O., & Wood, R. A. (2016). Effective use of cerium as redox proxy in carbonate-dominated marine settings. Chemical Geology, 438, 146–162. https://doi.org/10.1016/j.chemgeo.2016.06.027
Trueman, C. N., & Tuross, N. (2002). Trace metals in recent and fossil bone. In M. J. Kohn, J. J. Rakovan & J. M. Hughes (Eds.), Phosphates: geochemical, geobiological, and materials importance (pp. 489–521). Reviews in Mineralogy and Geochemistry 48(1). https://doi.org/10.2138/rmg.2002.48.13
Trueman, C. N., Behrensmeyer, A. K., Potts, R., & Tuross, N. (2006). High-resolution records of location and stratigraphic provenance from the rare earth element composition of fossil bones. Geochimica et Cosmochimica Acta, 70(17), 4343–4355. https://doi.org/10.1016/j.gca.2006.06.1556
Warny, S., Kymes, C. M., Askin, R., Krajewski, K., & Tatur, A. (2018). Terrestrial and marine floral response to latest Eocene and Oligocene events on the Antarctic Peninsula. Palynology, 43(1), 4–21. https://doi.org/10.1080/01916122.2017.1418444
Williams, C. T. (1988). Alteration of chemical composition of fossil bones by soil processes and groundwater. In G. Grupe & B. Herrmann (Eds.), Trace Elements in Environmental History (pp. 27–40). Springer-Verlag. https://doi.org/10.1007/978-3-642-73297-3_3
Williams, T. D. (1995). The Penguins, Spheniscidae. Oxford University Press.
Wrenn, J. H. & Hart, G. F. (1988). Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica. In R. M. Feldman & M. O. Woodburne (Eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula (pp. 321–447). Geological Society of America Memoir 169. https://doi.org/10.1130/MEM169
Zinsmeister, W. J. (1982) Late Cretaceous-Early Tertiary molluscan biogeography of southern Circum-Pacific. Journal of Paleontology, 56(1), 84–102.
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Leandro Martín Pérez, Carolina Acosta Hospitaleche, Lucía Elena Gómez-Peral, Alejandro Gómez Dacal, Marcelo Alfredo Reguero, Daniel Gustavo Poiré, Claudia Ernestina Cavarozzi
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CC Attribution-NonCommercial 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.